
This completes the proof of the theorem formulated in Sec. 2. 

For a complete solution of the piston problem, it remains to construct a solution of 
the mixed problem for Eqs. (l.l) with the impermeability condition on F' and the condition 
of continuous touching to the centered wave on the characteristic F2. Here the conditions 
for the consistency of the given boundary value problems are already satisfied. We ~ote that 
the result obtained can also be used in problems of describing the interaction of strong dis- 
continuities. The case when the surface Yo lies in the hyperplane t = 0 in E 4 is examined 
in [4]. Such centered waves arise in describing the decomposition of an arbitrary discon- 
tinuity on a curvilinear surface [5]. 

I thank L. V. Ovsyannikov for his attention to this work. 
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INJECTION EFFECT IN A CONTAINED EXPLOSION IN A 

LIQUID-SATURATED MEDIUM 

A. V. Vasil'ev, E. E. Lovetskii, 
and V. I. Selyakov 

UDC 534.222:532.546 

The escape of gaseous products from the cavity of a contained explosion into dry rock 
has been considered [I, 2]. The escape is due to the residual elevated pressure in the 
cavity. However, a contained explosion in a liquid-saturated medium may result in an ele- 
vated pore pressure around the explosion cavity, which exceeds the pressure in the cavity 
itself. This is possible because the fluid in the pores is compressed when the shock wave 
passes, and the strength of the skeleton means that the pressure does not revert to the ini- 
tial value on unloading: there remains a residual pressure in the pores of the order of the 
strength of the skeleton. On the other hand, the pressure in the explosion cavity at the 
end of the explosion is close to the lithostatic pressure, i.e., below the pressure in the 
pores. Therefore, the elevated pore pressure may cause implosion, namely injection of liquid 
into the cavity. This alters the temperature and pressure within the cavity, which in turn 
influences the cavity collapse. 

Here we consider theoretically the implosion effect and the influence on the heat and 
mass transfer on explosion in a liquid-saturated medium. 

Model for Heat and Mass Transfer after Explosion in a Water-Saturated Medium. It has 
been pointed out [3] that there may be a rise in the pore pressure after a contained explo- 
sion for the model of ~]. Figure I shows a typical graph for the pore pressure. The rise 
in pore pressure after the passage of a shock wave is indirectly confirmed by the ground 
water-level measurements after explosions [5]. Therefore, an explosion in a saturated rock 
may result in filtration not from the cavity but into it. When the liquid enters the cavity, 
where the temperature is about 104~ and the pressure about 15 MPa, the liquid evaporates, 
taking up energy from the rock vapor, which is thereby cooled. When that vapor reaches a 
state of saturation, it begins to condense and release latent heat. This may raise the 
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pressure in the cavity and result in a nonmonotone course for the pressure in the pore space 
near it. 

Further entry of liquid into the cavity cools it and therefore provides conditions for 
vapor condensation, which results in a fall in the pressure. 

The liquid infiltration outside the cavity is described by the nonstationary equation 
for infiltration 

aAp = Op/Ot 

with the following boundary and initial conditions: 

p(R~, t) = p ~ ( t ) ;  

p(oo, t) = Po; 

p(r,  O) = Po. 

Here a is the piezoconductivity coefficient; p, pressure of the liquid during the infiltra- 
tion; Rc, cavity radius; po, initial pressure of the liquid after the explosion; and Pc(t), 
pressure in the cavity; the last is dependent on m(t), the mass of liquid injected into the 
cavity at time t, which is defined by 

t 

0 

w h e r e  k i s  t h e  p e r m e a b i l i t y  o f  t h e  medium and  0 and  p* a r e ,  r e s p e c t i v e l y ,  t h e  d e n s i t y  and 
viscosity of the liquid. The energy-conservation equation defines the temperature of the 
vapor in the cavity up to the time t~ at ~fhich the vapor begins to condense: 

I) 

(2) 

(3) 

(4) 

(5) 

Eoz)-E~(t)+m(t)QT+ +~(t--to)[m~l=m(t)L 2 +m(t )~-  t--~(t--~) . L~- , . ~  ........... m ~ i .  ( 6 )  

Here to is the instant when the refractory component of the rock begins to condense; Eo, in- 
ternal energy of the vapor in the cavity at the start of injection; Et(t), part of the energy 
dissipated in the rock around the cavity and transported by the liquid infiltrating into the 
cavity up to time t; mo, mass of rock evaporated by the explosion; cl) specific heat of the 
liquid; c, molar specific heat of the gas; LI, latent heat Of evaporation of the refractory 
component (Si02); L2, latent heat of evaporation of the liquid; Pl and P2, molecular masses 
of Si02 and the liquid; T +, initial temperature of the liquid entering the cavity; T, tem- 
perature in the cavity at time t; ~, proportion of the vapor of the refractory component 
that has condensed up to time t; ~(t -- to), unit Heaviside function; and m(t), amount of 
liquid infiltrating into the cavity up to time t. 

We assume that after to the vapor pressure of the refractory component is described by 
a saturation curve with parameters p~ and BI: 

P = p l e x p  { - -B1 /T} .  (7)  

On t h e  o t h e r  h a n d ,  we a s sume  t h a t  f o r  S i02  v a p o r  we c a n  a p p l y  an  i d e a l - g a s  e q u a t i o n  f o r  a 
time-varying mass: 

p V  c = ( m * ( t ) / ~ ) R T ,  (8)  

where m*(t) = mo(1 -- ~(t)); from (8) we get 

~(t) = I - p V ~ q / ( m o R T ) ,  
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where p is th~ partial pressure of the Si02 vapor, which is described by (7). After the 
start of condensation of the liquid vapor, any fresh incoming liquid will not evaporate, 
and the energy-balance equation will take the form 

ET(t) - -  ET(t~) + A m( t )L~  = c z [re(t) - -  m ( t ~ ) ] ( T  - -  T+) ,  ( 9 )  

where Am(t) is the mass of liquid condensed up to time t. 

The pressure in the cavity is determined by the sum of ~he partial pressures for the 
rock and liquid vapors: 

pc  (t) = (p r  (0)) T (t) ~ (t o - -  t) ~ pl  exp ( - -  B I /T  ) ~ (t - -  to) + ( l 0)  

+ (m (t)/p2) (RT (t)/Vc) n (tl  - -  t) + p~ exp ( - -  B J T )  n (t - -  t~), 

where Vc = (4/3)~R~ is the volume of the cavity, Pl and BI are the constants in the satura- 
tion curve for Si02, p2 and B2 are the same for the liquid , and R is the universal gas con- 
stant. The first term in (|0) describes the change in partial pressure of the refractory 
component before condensation starts, the second describes the partial pressure of the re- 
fractory component (Si02) during condensation, the third describes the partial pressure of 
the vapor of the liquid before condensation starts, and the fourth describes the partial 
pressure of the liouid vapor after the start of condensation. 

Infiltration into a Finely Divided Medium. Calculations [3] show that after a con- 
tained explosion some 43% of the energy remains in the cavity and about 20% is dissipated 
in the region of the cavity in a layer whose thickness constitutes about 2% of the cavity 
radius. The infiltrating liquid takes up heat from this layer and transports it into the 
cavity. We consider two limiting cases for the heat transfer between the liquid and the 
heated layer: I) the temperatures of the pieces of rock and fluid come to equilibrium dur- 
ing the infiltration, and 2) the rate of infiltration is so high that the heat transfer 
between the liquid and the rock can be neglected. The characteristic heating time of the 
pieces is TI ~ R~/~, where Ro is the radius of a piece and ~ is the thermal diffusivity. 
The characteristic time for heat transfer by a piece of rock to the liquid is T2 ~ 2Ro~*Vp/k. 
In the first case (~I ~<Ti) one can solve (I)-(10) in approximate analytic form, which corre- 
sponds to infiltration of a liquid into a finely divided medium with characteristic piece 
size of Ro ~I0 -3 m. 

The analytic solution to (1)-(10) can be obtained for the initial stage of infiltration, 
where the injection has altered the pore pressure only near the cavity and the infiltration 
of the liquid may be considered as one-dimensional, when (1) becomes 

aOip/Ox ~ = Op/Ot,  ( t l )  

where x = r -- R c. 

Figure l shows that the initial pore pressure of the liquid may be taken as constant: 

p(x, O) : Po. (12 )  

The pressure has not had time to change in the initial stage of the process in areas remote 
from the cavity, so the right-hand boundary condition is 

p ( ~ , ' t )  = Po. (13) 

The rate of injection is determined by (po -- Pc(t)); the pore pressure substantially exceeds 
the pressure in the cavity during the implosion, so to calculate the amount of injected 
liquid we neglect the pressure change in the cavity: 

p(O, t) = p~(O). (1 4)  

This simplification results in a small error in the calculations ~5pc/(po -- Pc), but it en- 
ables one to solve two independent problems instead of a single self-consistent one: liquid 
infiltration and the changes in pressure and temperature in the cavity. The solution to 
(11)-(14) is ~] 

p ( x ,  t) = po - [po - p c  (O)l [ l  - r (x/iV~)], ( 1 5 )  

where ~ ( z ) =  e x p ( - - y ~ ) d g ;  the dimensions of the heated layer are much less than the char- 

0 
acteristic scales for the pressure profile, so the infiltration rate can be taken as constant 
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and equal to the rate at the boundary of the cavity. From (15) we get 

Vr = (M~*)@0 - -  pcO))/Vnat. (16) 

The t e m p e r a t u r e s  o f  t he  f l u i d  and the  p i e c e s  o f  r o c k  a r e  e q u a l  f o r  a f i n e l y  d i v i d e d  medium, 
and we have  as f o l l o w s  f rom the  e n e r g y - c o n s e r v a t i o n  e q u a t i o n :  

vet l pOW/Ox = ~ p r ( l  - -  n)OW/Ot, ( 1 7 )  

where  c r and Pr a r e  t h e  s p e c i f i c  h e a t  and d e n s i t y  o f  t he  r o c k ,  n i s  t b e  p o r o s i t y ,  and W i s  
t he  t e m p e r a t u r e  o f  t he  l i q u i d .  On the  b a s i s  o f  ( I 6 ) ,  (17) b e c o m e s  

(b/~t)OW/Ox = OW/Ot, ( 1 8) 
k P0--Pc(0) clo 

where  b =  , 1 / ~  CrPT(t--n) ; t he  s o l u t i o n  to  (18) i s  W(x, t )  = W(x + 2b~rt-), and t h e  de -  

tailed form of this function is determined by the initial temperature distribution in the 
heated layer, which can be out as 

W(x~ 0) = W.  exp ( - -DX/Rc)  + T +  

which agrees well with theoretical and experimental data. The heated layer at the Start con- 
tains the energy 

E z : 4~ [(t - -  n) ~ Pr + ncl P] .[ (W (x, 0) - -  r +) r*dr. 
R C 

The e n e r g y  t r a n s p o r t e d  by the  l i q u i d  f rom the  h e a t e d  l a y e r  to  the  c a v i t y  up to  t ime  t i s  

ET(t) ~ E~(i -- exp (--2bDtf~Bc)). (19) 

The mass o f  l i q u i d  i n j e c t e d  up to  t ime  t i s  d e f i n e d  by ( 5 ) ,  which  w i t h  (16) g i v e s  

k P o - - P c  (O) V y "  
re(t) = 8~P~p p~ ~ / , ~  (20) 

We substitute (19) and (20) into (6), (9), and (I0) to get algebrai c equations for the tem- 
perature and pressure. Up to to, we see from (6) that the temperature is the following func- 
tion of time: 

[ m c c 8 ~  k P~ -r-- 1 

where Et(t ) is defined by (19). The instant to is defined as the instant at which the par- 
tial pressure of the SiO~ vapor coincides with the pressure calculated from the saturation 
curve for SiO=. It is impossible to obtain an analytic expression for T(t) for t > to, and 
therefore (6) is solved by means of successive time steps and iteration. At some value t' > 
to, we substitute m(t') and Et(t' ) into (6). As a zeroth approximation we take the tempera- 
ture of the cavity in the preceding time step and substitute everywhere apart from the expo- 
nent in ~(T). We use the explicit form of ~(T) and take logarithms to get the first approxi- 
mation for T at time t' and continue the iteration. Usually, the iteration converges very 
rapidly (2-3 iterations suffice). 

These relationships have been used in calculating an implosion with the following param- 
eters (explosion in a water-saturated medium): Rc = 30 m; O = l g/cm3; a = 10 s cm2/sec; 
po = I00 MPa; Pc(0) = 15 MPa; k = 0.1 d; ~* = IcP; Eo = 3.35.1012 J; mo = 3.35.10 s kg; 
c I = 4.18 J/(g.deg); c = 4.5 R; L2 = 2.26.103J/g; L~ = 153.104 J/g; T + = 300~ ~2 = 18; 
~i = 60. 

Figure 2 shows the results as the time dependence of the. pressure and temperature in 
the cavity. The solid line shows the temperature and the broken line the pressure. There 
are three substantially different periods denoted by I, II, and III. Period I corresponds 
to cooling of the cavity due to implosion before the start of the condensation of the refrac- 
tory component. Period II begins with the condensation of the refractory component; it is 
characterized by constant temperature and by a rise in pressure due to the deposition of the 
latent heat of condensation of the refractory component. Period III begins when much of the 
refractory component has condensed: the pressure again begins to fall, while the temperature 
continues to fall. The most notable point is that the implosion effect results in marked 
cooling of the cavity, with the temperature falling from 104 to 3200~ in 30 sec. Another 
feature related to this is the nonmonotone variation of the pressure. 
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Infiltration in a Coarse Medium. In this case, the temperatures of the pieces of rock 
and the liquid do not equalize during the infiltration into the heated layer. Then the heat 
flux carried by the liquid is dependent on the size and shape of the pieces. We assume that 
the pieces are spherical, and then Et(t) can be determined by calculating the heat flux pro- 
vided by the pieces to the liquid: 

i 

E,~ (t) ~ -- S N  S ~ V T  ~r=Rod~, (22) 
o 

where S = 4vR~ is the surface area of a piece; N = V]-~R~, number of pieces in the heated 

layer; V, volume of this layer; X, thermal conductivity of the rock; and VTIr=Ro , temperature 
gradient at the boundary of a piece. 

The quantity XVTIr=Ro is determined approximately by solving the one-dimensional problem 
for the cooling of a body whose surface is maintained at a constant temperature [6]: 

--~VTIr=Ro = (~i-- T+) % (23) 

where Ti is the initial temperature of a piece and T + is the temperature of the liquid out- 
side the heated layer. We substitute (23) into (22) and use the fact that T+<< Ti to get 

E,( t )  = (3E1/Ro)]/ 'Yt  ~ ( 2 4 ) 

where El is the energy localized in the heated layer. If Et(t)/Eo<< I, the value of Et(t) can 
be neglected in (6), (9), and (21), which is true for the times that satisfy 

t <<--m iN ! 
We put % = 1.4"I0 -n cm2/sec, Ro ~ 5 cm, Eo/EI ~ 2 to get t<~10 a sec; we see that in this 
approximation (21) contains the similarity parameter ~(po -- pc)/(~*Rc)]~7~, and equations 
(I)-(I0) also satisfy this similarity law subject to (II). 

Figure 3 shows results obtained with the same parameters. It was assumed that Ro = 5 
cm. Figure 3 shows that the time dependence of the temperature and pressure is qualita- 
tively as for the finely divided medium. The pressure in the cavity is less than that in 
the first case, as would be expected. 

Therefore, no matter what the grain size of the medium, the implosion results in a 
marked reduction in the temperature and a nonmonotone variation in the pressure. In the 
first stage, the reduction in cavity pressure is due to the temperature fall arising from 
the injection of the liquid, whose temperature is well below the temperature of the vapor of 
the refractory component. As LI (the latent heat of evaporation of the refractory component) 
is much more than L= (the latent heat of evaporation of water), the heat released by conden- 
sation of the refractory component is sufficient to evaporate and heat a mass of water large 
by comparison with the mass of the refractory component condensing: mH20 ~ (LI/L2)msi02, 
which results in an increase of the partial pressure of the water vapor in the cavity. After 
the condensation of most of the refractory component, further injection of the relatively 
cool liquid results in fresh falls in the temperature and pressure. 

The nonmonotone pressure change is due mainly to the production of a considerable amount 
of heat on condensation of the refractory component. These calculations show that the heat 
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transfer from the medium to the entering liquid (in the finely divided and coarsely divided 
media) does not qualitatively affect the changes in pressure and temperature. One can esti- 
mate the heat flow from the cavity by thermal conduction by using the solution to the one- 
dimensional problem for the cooling of a body whose surface is maintained at a constant tem- 
perature, namely the melting point of the refractory component. From (23) we have 

Q(t )=~  ~ V~" -~ - - ~  a~d. (25) 

The energy transported by the liquid from the heated layer into the cavity up to time t is 

ET (t)~, T i - ~  ~=~o~v. (26) 

From (25) and (26) we get the ratio of the fluxes as Q(t)/Et(t)~ RoD/3Rc, where Rc/D is the 
characteristic dimension of the heated region. As D ~50 and Rc/D>~Ro we have Q(t)/Et(t)<< 
I, and Q(t) can be neglected. 

These time curves for the pressure and temperature in the cavity apply up to the instant 
when the cavity collapses. In the case of a coarse medium, there is a similarity parameter 
[k(po -- pc)/D*Re]#~7~ which enables one to derive the results for explosions of different 
energy outputs. 
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